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Fig. 23—Two of the circuit parameters for the
symmetric tee junction.

plicated structure in the presence of more significant

parameters. The agreement for Xb’ is actually much

better (5 per cent or less) than a first glance at the

curve would indicate. The two sections of the Xb’ curve

were computed by the formulas appropriate to the re-

spective ranges. The experimentally determined length

of line 1 (which is presented in Fig. 24 as normalized to

guide wavelength) is seen to be sufficiently small to con-
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Fig. 24—The remaining two circuit parameters for
the symmetric tee junction.

firm the corresponding theory, i.e., the terminals of the

transformer are located so close to Ts that line 1 is not

required in the representation.
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A Variational Integral for Propagation

Constant of Lossv Transmission Lines*
1

ROBERT E.

Summary—By assuming that the current on a lossy transmission
line flows in the axial direction, only a variational integral for the

COLLIN~

INTRODUCTION

propagation constant can be readily obtained. This variational inte-

T

HE dominant mode of propagation on a loss-free

gral shows that the usual power loss method of evaluating the attenu- transmission line is a TENI wave. In the trans-

action constant is valid for general transmission lines. This variational verse plane both the electric field and magnetic
integral also shows that the perturbation of the loss-free phase con- field may be derived from the gradients of suitable
stant is due to the increase in magnetic field energy caused by Pene-
tration of the field into the conductors.

scalar functions of the transverse coordinates. The

current flows entirely in the axial direction. Practical

lines have finite conductivity and hence iinite losses. As

* Manuscript received by the PGh’ITT, November 25, 1959;
revised manuscript received, January 20, 1960. This work was sup-

a consequence, there must be a component of the

ported in part by Air Force Cambridge Res. Center Contract Poynting vector directed into the conductors and this
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in turn implies at least a longitudinal connponent of

Ohio. electric field. ln general, longitudinal components of
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both electric and magnetic fields will exist (some excep-

tions are the coaxial line, single wire line, and the in-

finitely wide parallel plate line). A longitudinal mag-

netic field will have associated with it transverse cur-

rents on the conductors. Since these transverse currents

arise only because of the perturbation of the TEM

mode into a mode with axial field components, they are

small in magnitude compared with the axial current.

Thus, the losses (proportional to current density

squared) associated with the transverse currents will

also be small compared with the losses due to the axial

current. For a first approximation, the transverse cur-

rents may be neglected. When this is done, a variational

integral for the propagation constant of a general 10SSY

transmission line may be readily obtained.

The usual power-loss method of evaluating the at-

tenuation constant of a lossy transmission line is based

on an evaluation of the Joule heating loss in the con-

ductors by assuming a current distribution identical

with that for the loss-free line. 1 If PL is the power loss

per meter computed on this basis and P is the power

flow along the line, the attenuation constant a is

~ = PL/2P. (1)

The variational integral to be presented will provide a

justification of this method for general Iossy transmis-

sion lines.

.1 Jrariational Fowzulation

For simplicity, a general two-conductor transmis-

sion line as in Fig. 1 will be considered although the
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Fig. 1—A general two-conductor transmission line.

analysis is readily extended to multiconductor lines. If

the current is assumed to be entirely in the axial direc-

tion and the medium surrounding the conductors to be

homogeneous and isotropic, the field may be derived

from a vector potential A having a z component *(x,

y) e–W only. The relevant equations are

B = VXA (2a)

VV, A
E=–juA+— (2b)

jwqJo

V2A + k2A = O (2C)

1S. Ramo and J. R. Whinnery, “Fields and IVaves in Modern
Radio, ” John Wiley and Sons, Inc., New York, N. Y., 2nd cd.,
sec. 805:1953.

where k2 = CJ2MOE. For the present e is assumed real. For a

lossy dielectric medium surrounding the conductors e

is complex and shunt conductance losses are introduced.

This requires only a trivial modification of the analysis,

i.e., replacing a real e by a complex e.

From (2b) and letting A = a,~e–~’, it is found that

where k02 = kz +y2. Provided the radius of curvature of

the conductors S1 and Sz is much greater everywhere

than the skin depth 6, the conductors will exhibit a sur-

face impedance Z. given by

Z. = R. +jXm = (1 +j)/u~ (4)

where u is the conductivity and the skin depth 6 is

given by

a = (2/wpofJ)l/2

for a nonferrous material. The axial

is given by

J = nxH = ,uo-lnx(VxA)

= ~o-’[V(n-A) – (n. v)A] =

(5)

current density J

8A
— MO-1X (6)

where n is the unit outward normal from the conductors

and n. A = O since n and A are perpendicular. At the

conductor surface Es= JZ~ and hence from (3) and (6)

the boundary conditions for # are found to be

f~8+ti=Oon S,, S2 (7)

where, for convenience, joxZ~/kcz is denoted by f.
Let Ete-7z be the transverse electric field. From (2b)

If there are no transverse currents, nxEt or nxV$

must vanish on S1, S2. This condition is in general in-

compatible with (7) except for the loss-free transmis-

sion line or lines with a high degree of symmetry, e.g.,

coaxial line. For later use the solution for the loss-free

line will be outlined. The vector potential z component

will be taken as 1#0. The propagation constant ~ is equal

to jk and k,= O. If the potentials of S2 and S1 are V/2

and — V/2 respectively, then

4$0 = (#oe)112V/2 on S2

= – (WOe)’12V/2 on S,. (9)

For the general case a variational integral for k.z may

be derived as follows. The equation satisfied by ~ is

V,z# + kC2@ = O (lo)
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where Vt is the transverse operator aZ(d/dx) + aV(d/dy).

Multiply (10) by +, as yet an arbitrary function of x, y,

that is regular at infinity, and integrate over the whole

.xy plane to get

Using Green’s second theorem this may be rewritten as

(11)

where n is the inward normal to the contour C. The

contour C consists of the boundaries Cl, G of the two

conductors, the circle CO at infinity, and suitable cuts to

make the region under consideration simply connected

as in Fig, 2. Using the boundary condition (7) in (11)
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Fig. 2—Illustration of closed contour C= Co+ CI+G.

gives

since the contour integral around CO vanishes because #

and ~ are both regular at infinity. The first variation of

(12) is now computed by standard methods to yield’

z P. M. Morse and H. Feshback, “Methods of Theoretical Phys-
ics, ” McGraw-Hill Book Co., Inc., New York, N. Y., vol. 2, sec.
9.4; 1953.

The second term on the right may be transformed using

Green’s second theorem, i.e.,

and hence, the variation in kc is given by

2k,&kC H~~da = –
U’

8#(Vf’@ + kC’q5)da

‘A’,+c(’+’a%d’
+.ic,+c,(’+fa%’13)

An examination of this result shows th:it the variation

in k. vanishes provided both + and + satisfy the scalar

Helmholtz equation (10) and the boundary condition

(7). It now follows that if q5 is replaced by ~ in (12) the

resulting equation is a variational expression for k.z.

Thus3

JJ

Substitution of a first-order approximate solution for I)

into (14) yields a solution for k,z correct to the second

order. For low-loss lines a suitable trial function to use

in (14) is the corresponding solution IJO fcu- the loss-free

line. The integral in the denominator serves as a nor-

malization integral only. Once k,z has been found, the

propagation constant ~ may be obtained at once from

the relation ~ = (k.2 – k’) 1/~,

Evaluation of k,z

The true potential function ~. for the loss-free trans-

mission line will be used as a trial function in (14). This

function is a solution of Laplace’s equation in the xy

plane and hence V~’~o = O. Therefore, only the contour

integral in (14) needs to be evaluated. Furthermore, IJO

will be normalized so that

(15)

i This is not the only possible variational expression for k.z. HOW-
ever, this particular choice is a convenient one from which to obtain
approximate results.
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On S1 and S2 the current density J is equal to

–PO–] (6’+/&z) with d#/dn being negative on Sz and

positive on S1. Also on S1, ~0 = – (POE)I’z V/2, and on S2,

*O= (Poe) ‘/2 V/2. Substituting into (14) gives

$[kc’ = (/.406)-1
jcde~oZm

ko, 11.MJ2– Y04J dl
c,+c~

$

jwzm v
——

$
— ~J2dl – Z. — Jdl

C,+c, kc’ 2 c’

+zo~
+

Jdl
2. c,

(16)

where 20= (1.LO/e)I’z. On S1 the current is oppositely di-

rected to that on Sj so the last two integrals are together

equal to –ZO VI= – 2ZOP where V is the potential dif-

ference between S1 and S2 and I is the total current flow-

ing on one conductor and P is the power flow along the

line. In the first integral on the right-hand side,

(17)

where PL is the conductor loss per meter. Since the con-

ductivity is finite, the magnetic field penetrates into

the conductor and a net amount of magnetic energy is

stored in this internal field. At the surface, the magnetic

field is equal to the current density J in magnitude and

decays exponentially with distance u into the conductor

according to e–Ul*. Hence, the internal magnetic energy

is

where the integral over u need be taken only to some in-

terior point Z~Owhere the field is negligible. Integrating

over u gives

An internal inductance per meter may be defined by the

relation

and from (18)

where R is the equivalent series resistance of the line

per meter. Using these results the first integral in (16)

becomes (2kZ0/k.’) (jPL – 2c0W~,). Finall y, the equation

for k.2 becomes

kc’ + 2ZoPkc’ – 2kZi)(jPL – 2coW~,) = O. (20)

The solution for k,2 is

kcz = – .ZOP + [(ZOP)2 + 2kZO(jPL – 20Jtt’~j)] 1~2

= ; (jPL – 201W.J (21)

where the binomial expansion could

and Wmi are small compared with P

Replacing k.z by kz+ (j~+a) z gives

kPL
2fia = —p—

May

be used since PL

for low-loss lines.

(22a)

2wmi
kz–~2+a2=– — wk.

P-
(22b)

Since the losses are assumed small ~ = k and k’ –j32 may

be replaced by 2k(k –d). The right-hand side of (22b) is

of magnitude 2ak and, hence, a2 is negligible in com-

parison. Therefore, (22) reduces essentially to the more

familiar expressions

a = PL/2P (23a)

,6 = k + uWm,/P. (23b)

For a lossless line k== w 4L C where L and C are the

inductance and capacitance per unit length. Also, the

characteristic impedance Z, is equal to (-L/C) ljz and

PL = ~R12, P = ~ZJ2.

Therefore, (23) may be rewritten as follows:

a = R/2ZC (24a)

P = oIC(L + L,)]u’. (24b)

The phase constant 0 is increased by an amount cor-

responding to the increase in the inductance of the line

per meter due to addition of internal inductance. Since

wLi and R are introduced together because of the finite

conductivity, the series resistance of the line may be

considered as equivalent to making the permeability of

the medium surrounding the conductors complex. This

provides a formal analogy between series resistance

loss and shunt conductance loss as follows:

Lossless Line Lossy Line

~=~ e = E[l – jG/wC]

[

L% jR
M=wo ~=flo 1+~–~

1
where G is the shunt conductance, Li the internal in-

ductance, L the external inductance, and R the series

resistance of the line.

CONCLUSION

The use of a variational integral for kc2 verifies the

validity of the usual power-loss method for evaluating

the attenuation constant of low-loss transmission lines.

In addition, it provides a method whereby k.’ can be

evaluated to any desired degree of accuracy by using a

trial function containing several variational parameters

and determining these so as to make (14) stationary.

The method is, however, limited to those cases where

the transverse currents can be neglected in comparison

with the axial currents.


