1960

b=1051" 4&
T we150" b
x=7847" '

—-— THEORETICAL CURVES
O EXPERIMENTAL POINTS

L
T o 1]

35 45 55 65 75 .85 £ 10s

Fig. 23—Two of the circuit parameters for the
symmetric tee junction.

plicated structure in the presence of more significant
parameters. The agreement for X;’ is actually much
better (5 per cent or less) than a first glance at the
curve would indicate. The two sections of the X}’ curve
were computed by the formulas appropriate to the re-
spective ranges. The experimentally determined length
of line I (which is presented in Fig. 24 as normalized to
guide wavelength) is seen to be sufficiently small to con-
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Fig. 24—The remaining two circuit parameters for
the symmetric tee junction.

firm the corresponding theory, 7.e., the terminals of the
transformer are located so close to 73 that line [ is not
required in the representation.

ACKNOWLEDGMENT

The authors wish to acknowledge the participation
of M. Stillman, H. Hanft, S. Chertoff, and L. Horowitz
in various phases of this work.

A Variational Integral for Propagation
Constant of Lossy Transmission Lines*

ROBERT E. COLLINT

Summary—By assuming that the current on a lossy transmission
line flows in the axial direction, only a variational integral for the
propagation constant can be readily obtained. This variational inte-
gral shows that the usual power loss method of evaluating the attenu-
ation constant is valid for general transmission lines. This variational
integral also shows that the perturbation of the loss-free phase con-~
stant is due to the increase in magnetic field energy caused by pene-~
tration of the field into the conductors.
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INTRODUCTION

HE dominant mode of propagation on a loss-free
Ttransmission line is a TEM wave. In the trans-

verse plane both the electric field and magnetic
field may be derived from the gradients of suitable
scalar functions of the transverse coordinates. The
current flows entirely in the axial direction. Practical
lines have finite conductivity and hence finite losses. As
a consequence, there must be a component of the
Poynting vector directed into the conductors and this
in turn implies at least a longitudinal component of
electric field. In general, longitudinal components of
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both electric and magnetic fields will exist (some excep-
tions are the coaxial line, single wire line, and the in-
finitely wide parallel plate line). A longitudinal mag-
netic field will have associated with it transverse cur-
rents on the conductors. Since these transverse currents
arise only because of the perturbation of the TEM
mode into a mode with axial field components, they are
small in magnitude compared with the axial current.
Thus, the losses (proportional to current density
squared) associated with the transverse currents will
also be small compared with the losses due to the axial
current. For a first approximation, the transverse cur-
rents may be neglected. When this is done, a variational
integral for the propagation constant of a general lossy
transmission line may be readily obtained.

The usual power-loss method of evaluating the at-
tenuation constant of a lossy transmission line is based
on an evaluation of the Joule heating loss in the con-
ductors by assuming a current distribution identical
with that for the loss-free line.! If Py is the power loss
per meter computed on this basis and P is the power
flow along the line, the attenuation constant « is

a = Pr/2P. 1

The variational integral to be presented will provide a
justification of this method for general lossy transmis-
sion lines.

A Variational Formulation

For simplicity, a general two-conductor transmis-
sion line as in Fig. 1 will be considered although the
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Fig. 1—A general two-conductor transmission line.

analysis is readily extended to multiconductor lines. If
the current is assumed to be entirely in the axial direc-
tion and the medium surrounding the conductors to be
homogeneous and isotropic, the field may be derived
from a vector potential A having a 2 component ¥ (x,
y¥)e~7* only. The relevant equations are

B = VxA (2a)
, VY- A

E = — juA + — (2b)
Jwero

VA4 BA=0 (2¢)

1S, Ramo and J. R. Whinnery, “Fields and Waves in Modern
Radio,” John Wiley and Sons, Inc., New York, N. Y., 2nd ed.,
sec. 8 05: 1953,
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where k%= w2u¢e. For the present € is assumed real. For a
lossy dielectric medium surrounding the conductors e
is complex and shunt conductance losses are introduced.
This requires only a trivial modification of the analysis,
1.e., replacing a real € by a complex e.

From (2b) and letting A=ale 7 it is found that

ko*

E, = -
Jwpge

e (3)

where k2= k2++2 Provided the radius of curvature of
the conductors Sy and .S, is much greater everywhere
than the skin depth §, the conductors will exhibit a sur-
face impedance Z,, given by

where ¢ is the conductivity and the skin depth & is
given by

8 = (2/wpeo)'’? ©)

for a nonferrous material. The axial current density J
is given by

J = nxH = ui'nx(VxA)
94

= ul[V(n-A) — (n-V)A] = — pi! —~

(6)

where n is the unit outward normal from the conductors
and n-A=0 since n and A are perpendicular. At the
conductor surface E,=JZ,, and hence from (3) and (6)
the boundary conditions for ¥ are found to be

4
f—-+y¢=00nS8,S; (N
an

where, for convenience, jweZ,./k.? is denoted by f.
Let E:e~** be the transverse electric field. From (2b)
Jey
E; = Ty V. (8)

If there are no transverse currents, nxE; or nxVy{
must vanish on S, Sy This condition is in general in-
compatible with (7) except for the loss-free transmis-
sion line or lines with a high degree of symmetry, e.g.,
coaxial line. For later use the solution for the loss-free
line will be outlined. The vector potential z component
will be taken as . The propagation constant v is equal
to jk and k,=0. If the potentials of S; and .S; are V/2
and — V/2 respectively, then

Yo = (uoe)2V/2 on S
= — (uoé)llZV/z on Sl. (9)

For the general case a variational integral for k.2 may
be derived as follows. The equation satisfied by ¢ is

VA + kA =0 (10)
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where V, is the transverse operator a,(d/dx) +a,(3/dy).
Multiply (10) by ¢, as yet an arbitrary function of x, v,
that is regular at infinity, and integrate over the whole
xy plane to get

kﬁffqubdaz ——ff oV 2da.

Using Green’s second theorem this may be rewritten as

o
kﬁf vda = —ff YVilpda + ¢idl
¢ on

9
z//—?dl
C

in (1)

where n is the inward normal to the contour C. The
contour C consists of the boundaries C;, Cs of the two
conductors, the circle Cy at infinity, and suitable cuts to
make the region under consideration simply connected
as in Fig, 2. Using the boundary condition (7) in (11)
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Fig. 2—Illustration of closed contour C= Gy+Ci4-Co.

gives
v [ [ ovta = — [ [ 4vosae
31// oY d¢
— —}dl (12
N 01+02< on fan6> (12

since the contour integral around C, vanishes because ¢
and ¢ are both regular at infinity. The first variation of
(12) is now computed by standard methods to yield?

2k ok, f f oYda = — k2 f f Yépda
—ff Wﬁ&pda—ff (ki + Vip)da
65¢>a¢

Sy
tf (645D Xas g (asrr )5
C1+Cs on €140y an /) dn

2 P, M. Morse and H. Feshback, “Methods of Theoretical Phys-
ics,” McGraw-Hill Book Co., Inc., New York, N. Y., vol. 2, sec.
9.4; 1953.
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The second term on the right may be transformed using
Green's second theoremn, 7.¢.,

- f f YV 8pda = — f f 06V Yda

06¢ o
—— 6 -
+ 01+02<¢ on ¢ an>

and hence, the variation in k. is given by

2k Sk, f f dpda = — f f (Vi + klp)da
~ [ [ so(va0 + rpyaa

ooy
+ < + f~—> o
C1+Cy on

+ < e Il)——dl
C1+Cy d

An examination of this result shows that the variation
in k. vanishes provided both ¢ and ¢ satisfy the scalar
Helmholtz equation (10) and the boundary condition
(7). It now follows that if ¢ is replaced by ¢ in (12) the
resulting equation is a variational expression for k.2
Thus®

o
—ffwtww <f6¢+ w)é“—bdz
B2 = ortos t 1 gy

ffo

Substitution of a first-order approximate solution for ¥
into (14) vields a solution for k.2 correct to the second
order. For low-loss lines a suitable trial function to use
in (14) is the corresponding solution ¥, for the loss-free
line. The integral in the denominator serves as a nor-
malization integral only. Once k.2 has been found, the
propagation constant vy may be obtained at once from
the relation y = (k2 —k2) V2,

(13)

Evaluation of k.?

The true potential function ¥, for the loss-free trans-
mission line will be used as a trial function in (14). This
function is a solution of Laplace’s equation in the xy
plane and hence V%, =0. Therefore, only the contour
integral in (14) needs to be evaluated. Furthermore, ¥,
will be normalized so that

ff Yolda = uoe.

3 This is not the only possible variational expression for k2 How-
ever, this particular choice is a convenient one from which to ‘obtain
approximate results.

(15)
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On S; and S; the current density J 1is equal to
—ug (Y /dn) with O¢/0n being negative on S; and
positive on Si. Also on Sy, o= — (noe) /? V/2, and on Sy,
Vo= (uee) /2 V/2. Substituting into (14) gives

JweuoZm

k2 = (o)™ uoJ? — .U-0¢J:| dl

k.2

JwZm 14
= f ol *dl — Zo —f Tdi
o0y R 2J ¢,

Jdl

0140y [
V4

v
+Zo—

2.7 ¢,

(16)

where Zy= (ug/€) 2. On Sy the current is oppositely di-
rected to that on S; so the last two integrals are together
equal to —Z VI=—2Z,P where I/ is the potential dif-
ference between Sy and S; and 7 is the total current flow-
ing on one conductor and P is the power flow along the
line. In the first integral on the right-hand side,

ij{ J2dl = 2P,
C1+Cy

where P is the conductor loss per meter. Since the con-
ductivity is finite, the magnetic field penetrates into
the conductor and a net amount of magnetic energy is
stored in this internal field. At the surface, the magnetic
field is equal to the current density J in magnitude and
decays exponentially with distance # into the conductor
according to e, Hence, the internal magnetic energy

is
1 o
W = — Mof f J2e 2l dyd]
4 0 J ¢y

where the integral over # need be taken only to some in-
terior point #, where the field is negligible. Integrating
over # gives

(17)

1
Wi = “,U«otsf J¥dl = Pr/2w. (18)
8 C14+Cs

An internal inductance per meter may be defined by the
relation

%I2Lz = sz
and from (18)
wli = R = 2P,/I? (19)

where R is the equivalent series resistance of the line
per meter. Using these results the first integral in (16)
becomes (2kZo/k:2) (jPr—2wW,,). Finally, the equation
for k.2 becomes

kc4 + ZZoPkc2 el 2kZo(]PL - szmZ) = O (20)
The solution for k.2 is

k2= — ZoP + [(ZoP)? + 2kZo(jPL — 20Wn) |2

k
~— (jPr — 20Wn) (21)
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where the binomial expansion could be used since FPp
and TV,; are small compared with P for low-loss lines.
Replacing k.,* by &>+ (j8+a)? gives

20 = — (22a)

2W i

= ta= — 2k (22b)

Since the losses are assumed small 8~k and k22—£% may
be replaced by 2k(k—8). The right-hand side of (22b) is
of magnitude 2ak and, hence, «? is negligible in com-
parison. Therefore, (22) reduces essentially to the more
familiar expressions

o = PL/2P
8 =k -+ oW,/P.

(23a)
(23b)
For a lossless line 2=w+/LC where L and C are the

inductance and capacitance per unit length. Also, the
characteristic impedance Z, is equal to (L/C)Y? and

P = LiRI? P=1z1I,
Therefore, (23) may be rewritten as follows:
a= R/2Z,

8 = w|C(L + L]t

(24a)
(24b)

The phase constant § is increased by an amount cor-
responding to the increase in the inductance of the line
per meter due to addition of internal inductance. Since
wL; and R are introduced together because of the finite
conductivity, the series resistance of the line may be
considered as equivalent to making the permeability of
the medium surrounding the conductors complex. This
provides a formal analogy between series resistance
loss and shunt conductance loss as follows:

Lossless Line Lossy Line

e = e[l — jG/wC]

vk 5)
o = -
- L wl

where G is the shunt conductance, L; the internal in-
ductance. L the external inductance, and R the series
resistance of the line.

€ — €

M= Mo

CONCLUSION

The use of a variational integral for k.2 verifies the
validity of the usual power-loss method for evaluating
the attenuation constant of low-loss transmission lines.
In addition, it provides a method whereby k.2 can be
evaluated to any desired degree of accuracy by using a
trial function containing several variational parameters
and determining these so as to make (14) stationary.
The method is, however, limited to those cases where
the transverse currents can be neglected in comparison
with the axial currents.



